www.mymathscloud.com

Please check the examination details belo	w before ente	ering your candidate information		
Candidate surname		Other names		
Centre Number Candidate Nu	mber			
Pearson Edexcel Level	Pearson Edexcel Level 3 GCE			
Friday 7 June 2024				
Afternoon (Time: 1 hour 30 minutes)	Paper reference	9FM0/3C		
Further Mathema	tics			
Advanced				
PAPER 3C: Further Mechanics 1				
SIII/ . 1///				
3				
(V				
You must have: Total Marks Total Marks				
Mathematical Formulae and Statistical Tables (Green), calculator				
1 - b N 2 - 1 ac				

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

P75322A
©2024 Pearson Education Ltd.
F:1/1/

A particle A has mass 3 kg and a particle B has mass 2 kg.

The particles are moving on a smooth horizontal plane when they collide directly.

Immediately before the collision, the velocity of A is $(3\mathbf{i} - \mathbf{j}) \,\mathrm{m \, s}^{-1}$ and the velocity of B is $(-6\mathbf{i} + 2\mathbf{j}) \,\mathrm{m \, s}^{-1}$

Immediately **after** the collision the velocity of A is $\left(-2\mathbf{i} + \frac{2}{3}\mathbf{j}\right)$ m s⁻¹

(a) Find the total kinetic energy of the two particles before the collision.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Find, in terms of \mathbf{i} and \mathbf{j} , the impulse exerted on A by B in the collision.

(3)

(c) Find, in terms of i and j, the velocity of B immediately after the collision.

(3)

first of all, let's illustrate the above OBLIQUE COLLISION diagrammatically-label direction of motion, respective velocities, etc.

BEFORE:

AFTER:

3kg 2kg

3kg 2kg (56)

(a) first we're asked to find the total K.E of the particle before the collision; subbing into our formula for K.E

formula:

before we sub in, PYTHAGORISE the velocities BEFORE for A and B

so we can sub in the scalar velocities , not the vectors

$$|V_A| = \sqrt{(3)^2 + (-1)^2} |V_B| = \sqrt{(-6)^2 + (2)^2}$$

= 140

subbing this into our formula:

K.E =
$$\frac{1}{2}(3)(\sqrt{10})^2 + \frac{1}{2}(2)(\sqrt{10})^2$$

units for K. Eis Joules, J

expand brackets

(b) non to find the impulse exerted prophregips decision the information given on A into our Impulse-momentum formula (VECTOR version)

> 4NOTE: could in theory also have worked out the Impulse exerted on 13 by A (due to Newton's Third law which states that every action has an equal and opposite reaction), but the question gives us more information on A

formula:
$$I = m(y-y)$$

subbing into above:

$$I = 3(\binom{-2}{2/3}) - \binom{-3}{-1})$$
expanding
$$I = 3(\frac{-5}{5/3}) = \binom{-15}{5} Ns$$

(c) let Ve = (a)-tho mays to find this vector velocity

WAY 1: Subbing into vector PCLM

tormala: MA TA + MB TB = MA TA + MB TB (means total momentum before the collision equals total momentum after)

$$3\left(\frac{3}{-1}\right) + 2\left(\frac{-6}{2}\right) = 3\left(\frac{-2}{2}\right) + 2\left(\frac{0}{6}\right)$$

expand above

$$\begin{pmatrix} q \\ -3 \end{pmatrix} + \begin{pmatrix} -12 \\ 4 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \end{pmatrix} + \begin{pmatrix} 2\alpha \\ 2b \end{pmatrix}$$

collect vectors

$$\frac{\begin{pmatrix} 2a \\ 2b \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}}{\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3/2 \\ -1/2 \end{pmatrix} m s^{-1}}$$
or $\begin{pmatrix} 1.5 \\ -0.5 \end{pmatrix} m s^{-1}$

$$V_{8} = {3/2 \choose -1/2} ms^{-1}$$
or ${1.5 \choose -0.5} ms^{-1}$

WAY 2: vector impulse-momentum (on B by A)

... focusing just on the motion of B:

here we can exploit Newton's 3rd Law-means every action has an equal and opposite

=) I on B by A=-(I on A by B)
and know from (b) that
$$I = -(-15) = (-15)$$

hence subbing into our formula:
 $\begin{pmatrix} -15 \\ -5 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 6 \end{pmatrix} - \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

expand above

$$\begin{pmatrix} 15 \\ -5 \end{pmatrix} = 2 \begin{pmatrix} a+6 \\ b-2 \end{pmatrix}$$

 $\begin{pmatrix} 15 \\ -5 \end{pmatrix} = \begin{pmatrix} 2a+12 \\ 2b-4 \end{pmatrix}$

equating i components

Question 1 continued	=> 6=-1/2
	$\therefore \text{ Subbing into our}$ initial expression for V_{R} $V_{\text{R}} = \binom{3/2}{-1/2} \text{ or } \binom{1.5}{-0.5} \text{ ms}^{-1}$
5in(x + 1) // 5181205Y + 1	cosxsiny
$\begin{array}{c} x^{\prime\prime} \\ x^{\prime\prime} \\ x \\ \end{array}$ $\begin{array}{c} x \\ x \\ \end{array}$ $\begin{array}{c} x \\ x \\ \end{array}$ $\begin{array}{c} x \\ x \\ \end{array}$	
ly Mat	hs Clou

A particle P of mass m is at rest at a point on the plane.

The particle is projected **up** the plane with speed $\sqrt{2ag}$

The particle moves up a line of greatest slope of the plane and comes to instantaneous rest after moving a $\frac{distance d}{d}$.

The coefficient of friction between P and the plane is $\frac{1}{7}$

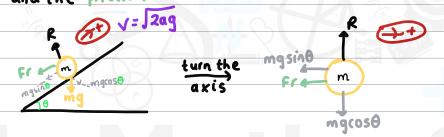
(a) Show that the magnitude of the frictional force acting on P as it moves up the plane

is
$$\frac{4mg}{35}$$

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


Air resistance is assumed to be negligible.

Using the work-energy principle,

(b) find d in terms of a.

(4)

(a) let's illustrate the above diagrammatically-label the speed, the distance, d' and the friction

the question asks us to find Fruhere:

formula: Fr = MR

\[
\tag{\text{reaction } \text{ have to resolve vertically: force}}
\]

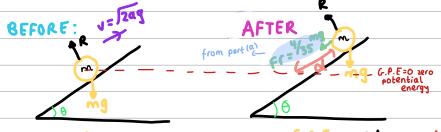
\[
\text{coefficient of friction}
\]

\[
\text{R(1): R = mqcos0}
\]

but given that tand=3/4-hence constructing

the appropriate trig triangle, using the

3,4,5 Pythag. triple


5
3 =>
$$\cos \alpha = \frac{A}{H} = \frac{4}{5}$$

$$\sin \alpha = 0/H = 3/s$$

: R=mg(415)

Question 2 continued

(b) to use the work-energy principle, let's draw out two diagrams: one for before the particle travels the distance 'd' and one for after-label the appropriate energies

cos6.1.E-need perp.distance-'h'

now sub all into work-energy principle (includes dissipative forces)

sub into above

$$\frac{1}{2} \wedge (\sqrt{2ag})^2 + 0 + 0 = 0 + \sqrt{g(3/5d)} + 4/35/6gd$$

cancel m's and expand brackets

$$ag = \frac{3}{5}gd + \frac{4}{35}gd$$

cancel g's and collect like terms

$$a = \frac{5}{7}d$$
 $+\frac{5}{7}$
 $= \frac{1}{5}d = \frac{7}{5}a$

(Total for Question 2 is 7 marks)

- 3. A car of mass 1000 kg moves in a straight line along a horizontal road at a constant speed of 72 km h⁻¹
 - The resistance to the motion of the car is modelled as a constant force of magnitude 900 N

The engine of the car is working at a constant rate of PkW.

Using the model,

(a) find the value of P.

(3)

The car now travels in a straight line up a road which is inclined to the horizontal at an angle α , where $\sin \alpha = \frac{2}{40}$

• In a refined model, the resistance to the motion of the car from non-gravitational forces is now modelled as a force of magnitude 20v newtons, where $v \, \text{m s}^{-1}$ is the speed of the car

At the instant when the engine of the car is working at a constant rate of $30 \,\mathrm{kW}$ and the car is moving up the road at $10 \,\mathrm{m\,s}^{-1}$, the acceleration of the car is $a \,\mathrm{m\,s}^{-2}$

Using the refined model,

(b) find the value of a.

(4)

Later on, when the engine of the car is again working at a constant rate of $30 \,\mathrm{kW}$, the car is moving up the road at a constant speed $U \mathrm{m \, s}^{-1}$

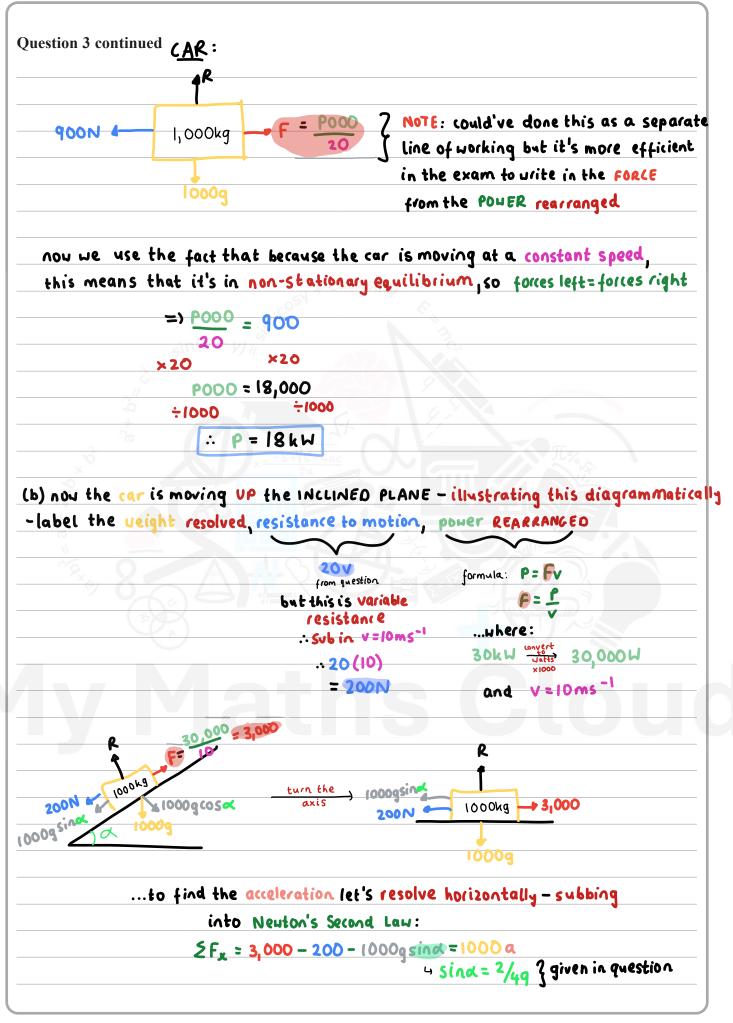
Using the refined model,

(c) find the value of U.

(5)

(a) let's illustrate the above diagrammatically: make sure to label the weight, the resistance to motion, and the four regranged

Grant P= FV-) VELOCITY in ms-1


POWER FOR (I

...where:

let's convert 72kmh-1to ms-1

72kmh^{-1×600} 72,000mh^{-1÷3,600}20ms⁻¹


```
Question 3 continued
```

collect like terms:

$$\frac{2800 - 2000}{49} = 1000 a$$

$$=$$
) $a = 2.4 \text{ ms}^{-2}$

(c) see how in the refined model, the only thing that changes is v becomes $U \rightarrow$ this hence affects the: • $P = P \cos x \sin y$

... populating onto Our diagram (NOTE: in exam, don't waste time

20U

1,000kg

= 100g(449) = 200g 1000gcos&

now use the fact that the car is moving with constant speed .. suggests it's in non-stationary equilibrium, so forces left = forces right

$$R(H)$$
: $\frac{30,000}{4} = \frac{200}{49}g$

×U

solving this quadratic equtn

4 it's easily factorisable

$$(u-30)(u+50)=0$$

P 7 5 3 2 2 A 0 8 2 4

Question 3 continued
accyc:
cosxsiny
in the same of the
sin(x + y) //
$\frac{3}{3}$
× × 2a
(Total for Question 3 is 12 marks)
(Total for Question 3 is 12 marks)

WWW.mymathscloud.com Year 1 Elastic Collisions in 1D - Successive Collisions (with a Fixed Surface),

Impulse, Kinetic Energy

4. A particle A of mass 2m is moving in a straight line with speed 3u on a smooth horizontal plane. Particle A collides directly with a particle B of mass m which is at rest on the plane.

The coefficient of restitution between A and B is e, where e > 0

(a) Show that the speed of B immediately after the collision is 2u(1+e).

(6)

After the collision, B hits a smooth fixed vertical wall which is perpendicular to the direction of motion of B.

(b) Show that there will be a second collision between A and B.

(3)

The coefficient of restitution between B and the wall is $\frac{1}{2}$

Find, in simplified form, in terms of m, u and e,

(c) the magnitude of the impulse received by B in its collision with the wall,

(3)

(d) the loss in kinetic energy of B due to its collision with the wall.

(3)

let's illustrate this elastic collision in 1D diagrammatically - make sure to label the respective speeds, direction of motion, etc.

AFTER:

following the normal procedure for this type of collision:

... first using PCLM-this means that the total momentum before equals the total momentum after:

sub into the above

$$2 \times (3u) = 2 \times x + my$$

cancel m's and expand brackets

next, because both the speeds after are unknown,

let's use NEL (Impact Law) rearranged

formula: e = speed of separation

speed of approach

subbing into above

Question 4 continued

$$e = \frac{y - (x)}{3u - 0} = \frac{y - x}{3u}$$

and because ue're asked for Ve = y, need to solve

1 and 2 simultaneously - elim. 1x1

1) + 2 × 2

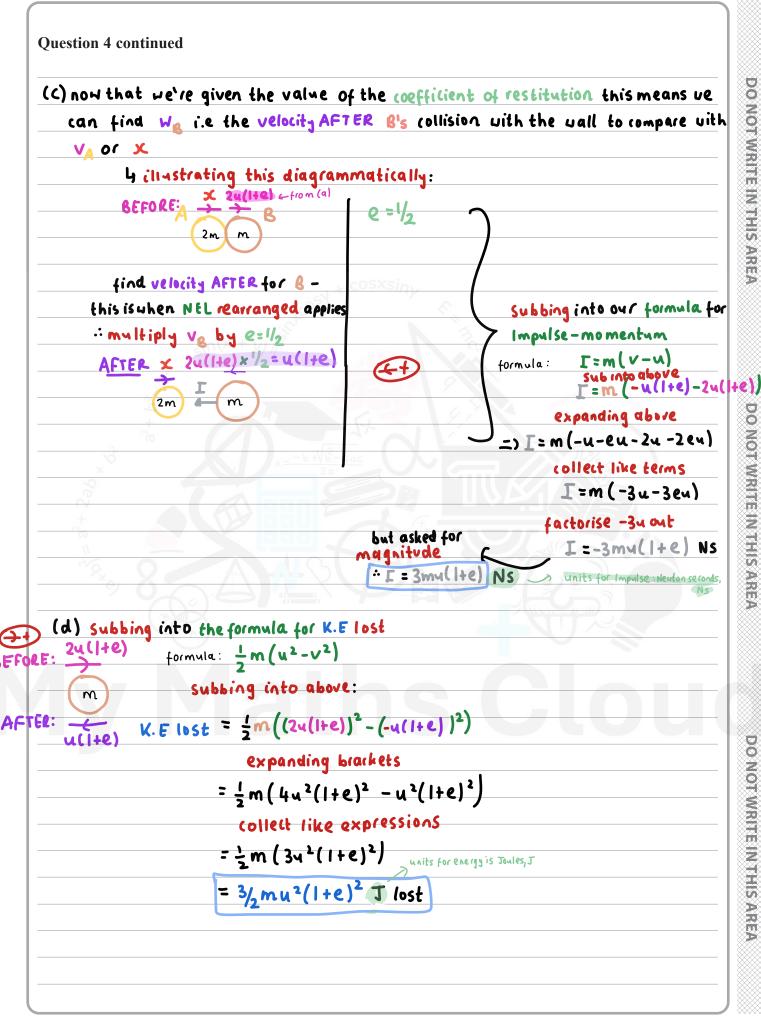
factorise bu out

(b) the fact that particle & may potentially collide with A a second time suggests we should find the value of voor x

4 hence getting the oand ofrom (a) and elim 'y'

factorise 3u out

$$=)x=u(2-e)$$


and because 04e41 (our source of inequality)

4 hence A does NOT change direction after the collision, but & does (as it rebounds

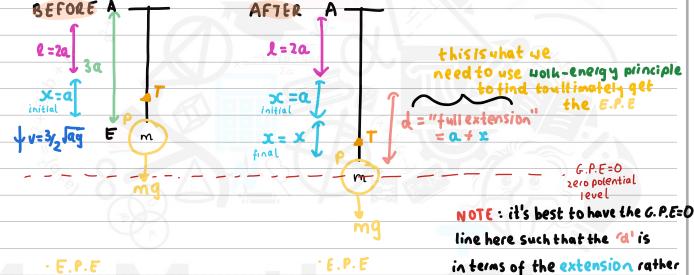
off the uall) hence there must be a

second collision between A and B

uestion 4 continued					
	:051	+ cosxsiny	<u> </u>		
	:[0]		3		
S	In(x + y) //	(A)			
ر ا/		7522	9		
20			4.5		
95			1.2		
××	$x = \frac{-b + \sqrt{b}}{2a}$	-4ac			> 1
282					
+	(3) [20]	(+	×		
"			4		
"9 _{x0} , 9	AA-V			<i>E</i> (0)0	
3			00		
)				
				-744	
			(Total for C	Question 4 is 15	marks)
			(10:01 101 (caestion 7 is 13	mu Koj

5. A light elastic string has natural length 2a and modulus of elasticity 2mg. One end of the string is attached to a fixed point A on a horizontal ceiling. The other end is attached to a particle P of mass m.

The particle P hangs in equilibrium at the point E, where AE = 3a.


The particle P is then projected vertically downwards from E with speed $\frac{3}{2}\sqrt{ag}$

Air resistance is assumed to be negligible.

Find the elastic energy stored in the string, when P first comes to instantaneous rest. Give your answer in the form kmga, where k is a constant to be found.

(7)

the most important thing to consider when approaching elastic strings and springs questions is to draw a detailed diagram-here let's do one for BEFORE the particle is projected and one for AFTER-label the appropriate energies

than the extension being in terms

of 'd'

now sub all into work-energy principle Lincludes dissipative forces)

expand brackets

q mga + mgl=)+ mga = 2mg(a+x)2

14

K.E

G.P.E

Question 5 continued

cancel mg's

$$\frac{9}{8}a + x + \frac{a}{2} = 2(a+x)^2$$

solve above for 'x'

$$\frac{q}{8}a + x = \underbrace{(a+x)^2}_{2a} - \underbrace{\frac{a}{2}}_{2a}$$

expand the double bracket

$$\frac{q}{g}a + x = a^{2} + 2ax + x^{2} - \frac{q}{2}$$

get common denominator on RHS

$$\frac{9}{8}q + x = x^2 + 2ax + x^2 - q^2$$

× 2a

formula:

x2a

$$\frac{q}{4} \alpha^{2} + 2q x = 2q x + x^{2}$$

$$= 3 x^{2} = \frac{q}{4} \alpha^{2}$$

Square root

$$\frac{1}{2} \frac{d}{d} = \frac{\alpha + \frac{3}{2}\alpha}{2}$$

subbing this into our formula for E.P.E mod. ofe lasticity pertension E.P.E = 2x2

224 natural

simplify down

units for energy are Joules, J

$$= \frac{25}{4} \text{mga} = \frac{25}{8} \text{mga} \text{J}$$

(Total for Question 5 is 7 marks)

6. In this question, \mathbf{i} and \mathbf{j} are horizontal perpendicular unit vectors.

A particle P is moving with velocity $(4\mathbf{i} - \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$ on a smooth horizontal plane. The particle collides with a smooth vertical wall and rebounds with velocity $(\mathbf{i} + 3\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$

The coefficient of restitution between P and the wall is e.

(a) Find the value of e.

(6)

After the collision, P goes on to hit a second smooth vertical wall, which is parallel to i.

The coefficient of restitution between P and this second wall is $\frac{1}{3}$

The angle through which the direction of motion of P has been deflected by its collision with this second wall is α° .

(b) Find the value of α , giving your answer to the nearest whole number.

(4)

(a)illustrating this oblique collision with a fixed surface diagrammatically-label the velocity components, direction of motion, etc.

(4,1)

the key here is that we are dealing with an unknown vector wall - hence need to find the unknowns by subbing into our two formulae for collisions with vector walls

formula: W.V.V.W

subbing into above

$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$

evaluating the scalar product

collect like terms

... can use this into in 2 ways

to get the vector wall:

WAY 1: as a vector

WAY 2: as a linear equation

if b= 3/4a, this is the same as

Question 6 continued

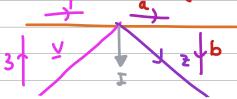
now we've got $u = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, this means that the Impulse is the vector perpendicular to u = 3 ways to find this:

MAY 1: dot product	WAY 2: as linear equins	HAY 3: 90° rotation
rmula: a·b=0	(4):m,=3/4	treating the perpendicular
$\binom{4}{3} \cdot \mathbf{I} = 0$	∴ y = 3/4×	vector as a 90° rotation
=) I = (-3)	formula: m, > m2 = -1	of (3)
or (3)	m2=negative	clock wise:
(-4)	of m, :-4/3	i
	=) (-\(\frac{1}{2}\)	1
(>	x-3(-3)x-3	
5/11/2	$=) \left(-\frac{1}{4}\right) \times \frac{3}{3} \times \frac{3}{3}$ $\therefore \left(-\frac{3}{4}\right) \text{ as a}$ vector	:. es a linear transform
. //	or	$(\frac{6}{-10})(\frac{4}{3}) = (\frac{4}{-3})$
9 +	*3 (5) * 3	
95	$\therefore \mathbf{I} : \begin{pmatrix} -3 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	anticlockuise:
×, Q	$\times = -b + \sqrt{b^2 - 4ac}$	ją ji
900		
+		$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \end{pmatrix}$
		.as a linear transformati
		(0 -1)(4) - (-3)
9 000		
(3)		· I = (-3) or (-3)
nroceo d uit	h Any of the tuo led. $L=\begin{pmatrix} -\frac{3}{4} \end{pmatrix}$	
P. 3.36 31 31		

now can sub into our second formula:

subbing into above

$$-e\begin{pmatrix} 4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$


evaluating the scalar product

expanding and solving for e:

Question 6 continued

(b) illustrating the second collision diagrammatically-now with a NON-VECTOR WALL

the fact that we need to find the angle of deflection suggests we need to find the parallel and perp. components AREA e=1/3

...tuo uays to do this:

MAY 2: using vector formulae:
now H= (1) : I= perpendicular = (0)
and let 2 = (a)
subbing above into formula:
formula: U·U=V·W
evaluate the scalar products

perpendicular to the Hall =) [= Q

. 3 x 1/3 = 1

... now, next formula: ..adding onto diagram: formula: -eu. I = v. I

subbing into above:

=)
$$2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 evaluate the scalar products
$$-1/3 (-3) = -b$$

now need to find the angle of deflection between

$$y = {1 \choose 3}$$
 and $z = {1 \choose -1}$

Lituo ways to do this:

WAY 1: scalar dot product	WAY 2: vector triangles and trig		
formula	¥ /!		
formula: cosa = a.b c scalar product	see a is the Sum of the angle in		
la b c product of magnitudes	the pink triangle-call it '6'		

Question 6 continued	
subbing into above:	and angle in the purple triangle
$\cos \alpha = (\frac{1}{3}) \cdot (-\frac{1}{1})$	-call it -&'
	=> $\propto = \tan^{-1}(3/1) + \tan^{-1}(1/1)$
$\sqrt{(1)^2+(3)^2}\sqrt{(1)^2+(-1)^2}$	= 71.56 SOI"+45°
evaluate scalar product	= 117°(3 s.f)
and square roots	
(0s4 = -2 -2	
$\frac{\cos 4 = -2}{51052} = \frac{-2}{520}$	
$\therefore \propto = \cos^{-1}\left(\frac{-2}{\sqrt{20}}\right)$	
·	
=116.565	
= 1170(35.{)	
	(Total for Question 6 is 10 marks)

7.

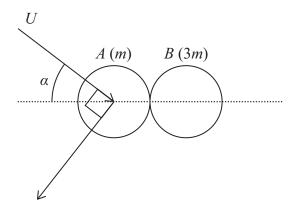


Figure 1

A smooth uniform sphere A of mass m is moving with speed U on a smooth horizontal plane. The sphere A collides obliquely with a smooth uniform sphere B of mass M which is at rest on the plane. The two spheres have the same radius.

Immediately before the collision, the direction of motion of A makes an angle α , where $0^{\circ} < \alpha < 90^{\circ}$, with the line joining the centres of the spheres.

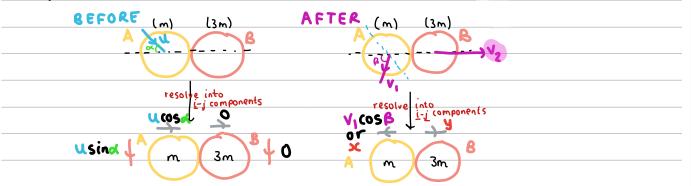
Immediately after the collision, the direction of motion of A is **perpendicular** to its original direction, as shown in Figure 1.

The coefficient of restitution between the spheres is *e*.

(a) Show that the speed of B immediately after the collision is

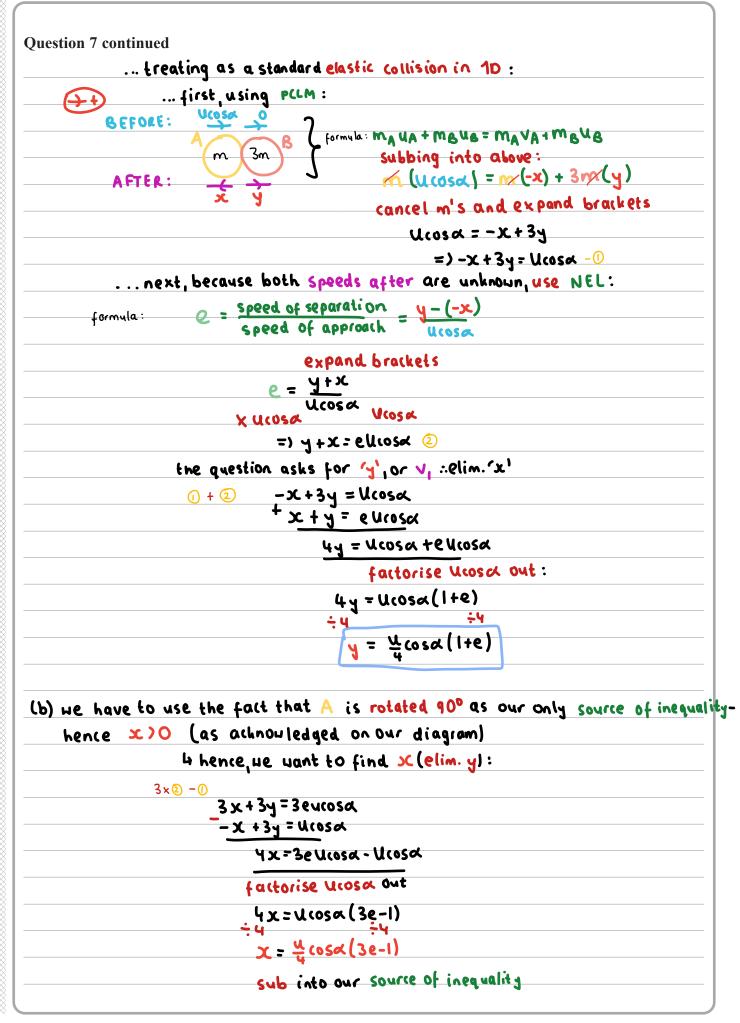
$$\frac{1}{4}(1+e)U\cos\alpha$$

(6)


(b) Show that $e > \frac{1}{3}$

(4)

(c) Show that $0 < \tan \alpha \le \frac{1}{\sqrt{2}}$


(5)

(a)let's break the diagram in Fig I down into a before and after the collisions happens

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued

(c) now that the angle & is involved ne're prompted to looking at the

parallel and perpendicular components for A after the collision

cancel u's and use sind

xtona

4004 04e41

S A

but ora 4900 where ton is +ve

Question 7 continued	

